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DIRECT CALCULATION OF SUBLIMATING ABLATION

Hirotoshi Kubota

Abstract. A direct and rapid calculational
method of sublimating ablation for a hypersonic
heat-shielding device is presented. This is
based on a numerical analysis of the Hartree-
Womersley method which reduces parabolic partial
differential equation to a corresponding
ordinary one by means of a kind of implicit.

1. Introduction

When a spacecraft reenters the atmosphere, powerful shock waves /1** 

are produced around the craft, and the air currents behind the

shogckwaves assume an extremely high temperature. It has been made

clear in recent research that an effective way to protect the craft

from this sort of aerodynamic heating is to adopt mass transfer

cooling, in which a relatively small quantity of cooling gas or

cooling liquid is blown off into the external fluids.

This utilizes chiefly the following three effects: (1) By mix-

ing the low-temperature cooling gas with the main currents of high-

temperature gas, the air-current temperature near the surface of the
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**
First Aerodynamics Department.

Numbers in the margin indicate pagination in the original foreign
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object is lowered. (2) The temperature gradient is reduced on ac-

count of the increased thickness of the boundary layer due to the

increased mass inside the boundary layer, and also due to variations

of the velocity distribution and temperature distribution inside the

boundary layer. (3) Heat absorption occurs because of chemical re-

actions or phase changes inside the boundary layer or on the surface

of the substance.

Possible heat-protection methods are transpiration cooling, film

cooling, local mass injection cooling, or ablation cooling. They

each have their advantages and disadvantages, and it is difficult to

determine which of these methods would be most effective under all

possible conditions. Nevertheless, the ablation cooling method con-

tains the above-mentioned effects of (2) and (3), and there is no

doubt that it still remains one of the most promising heat-protection

modes as long as one ignores the actual, economical problems such

as repairs of the eroded surface of the object. It should be noted

that this method has a rather high cooling effect.

This method was based on the idea of protecting at all costs the

most important parts of the craft, while allowing, or rather posi-

tively encouraging, the melting of the surface substances of the

craft by means of external heat. Research concerning this was per-

formed at the early stages by Sutton [1] and Roberts [2]. During

the process of ablation, generally speaking, a liquid phase boundary

layer and a gaseous phase boundary layer are formed on the surface

of the object. That is, the solid phase surface of the object melts

producing a liquid-phase boundary layer, over which a gaseous bound-

ary layer is formed consisting of a mixture of the evaporated gas

and the external gas. The thermal energy in the high-temperature

air currents is transmitted to the surface of the object through

these boundary layers. Part of it is absorbed into the latent heat

of evaporation and the latent heat of melting, while the remainder_---

is absorbed in the form of the thermal capacity of the structural

materials.
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The substances chiefly used as the surface materials are high

polymer plastics, graphite, etc. Other materials are also known

in which protection from heat is attained by bringing about a chemi-

cal reaction on the surface or by creating a char layer inside the

object [3, 4, 5, 6, 7].

If the object itself is subjected to sublimation, the surface

substance will change directly from a solid into a gas. Therefore,

there will be only a gaseous boundary layer on the surface of the

object. Nevertheless, this does not interfere essentially with the

validity of the analytical method, which is based on a two-phase

boundary layer including also a liquid boundary layer. Thus, this

paper will deal with sublimating ablation and will clarify its

mechanism.

The writer and his colleagues already on a previous occasion

used the micro-disturbance theory to analyze sublimating ablation of

hemispherical objects, using Teflon materials [51. The results

showed that the calculated values differed considerably from the

test values when there was a relatively low stagnation point tem-

perature. It-would be significant to resort to an electronic com-

puter and use a unified method of obtaining a direct, numerical

solution, not only in order to check out the results obtained pre-

viously, but also to give the theory a more universal validity. From

this standpoint, the questions dealt with in this report may be sum-

marized in terms of the following three points:

(1) Essentially, the ablation phenomenon ought to be determined

by the process of chemical reactions of the surface substances in

combination with the aerodynamic heat transfer process in the circum-

ference of the object. Thus, if the conditions inside the substance

and the conditions of the main current are given, the physical vari-

ables on the surface of the substance, particularly the ablation----

speed, the surface temperature, and the heat transfer coefficient,

will be determined categorically.
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(2) The flow becomes dissimilar downstream from the stagnation

point of axially symmetrical objects. The physical variables in

the flowwise direction are sought by applying the Hartree-Womersley

method, proposed by Hartree and Womersley [8] and further developed

by Smith et al. [9] for the dissimilar terms in the boundary layer

equation describing this area. The purpose of this method (here-

after abbreviated as| the H-W method) is to reduce a parabolic partial

differential equation to a corresponding ordinary one by means of a

kind of implicit scheme..

The least square error method is applied to the two-point bound-

ary value problem of the ordinary differential equation obtained by

the H-W method as described above, and a general solution is proposed.

A simplified version of this method has been used the Nachtheim and

Swigert [10] in cases when there are as many as two unknown boundary

conditions. However, in the present case, seven departure values

are necessary to carry out numerical integration of the ordinary

differential equation. Of these, only one is given explicitly, and

the other six are unknown. These six departure values (unknown

boundary conditions) are related by three &onstrain conditions.

The remaining necessary number of boundary conditions are given at

the i~ternaledgelof the boundary layer. Two methods are used in

problems of this type: the initial value method, and the quasi-

linearization method. In the initial value method [11], the departure

values (unknown boundary conditions) are suitably assumed, the

numerical values are integrated, and iterative calculations are con-

tinued until the conditions of the external edge of the boundary

layer are satisfied. In the quasi-linearization method [12], the

original equation is linearized, and a non-homogeneous solution -

consisting of a lower-order approximate solution - is sought. Both

methods give good results when the number of departure values (unknown

boundary conditions) to be assumed is small, but there is a tremen-

dous increase in the difficulty when the number becomes larger-._- Fur-

thermore, the presence of constraintI conditions on the wall also

complicates the problem.
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The method used here is a further development of the initial

value method. No matter how the number of unknowns or the number

of restraining conditions are increased, the method can be applied

in principle as long as there is agreement with the fundamental

equation. It is also believed that the method can be applied to

other problems as well, as long as they are boundary layer type

problems (with asymptotic behavior at the upper limits of the domain).

Let us assume a semi-stationary ablation, in which the surface

sweepback velocity, and thence the ablation velocity, is almost un-

affected by the time. (For a detailed discussion, refer to [51.)

The thermal properties and physical quantities of most ablation sub-

stances are not clear [7]. Teflon (polytetrafluoroethylene) is one

of those substances which are subject to sublimating ablation (it

has been observed experimentally that there is probably a melting

process, but since the temperature range of this process is extremely

small|, it is assumed that there is only a sublimation process) and

for which the physical quantities have been clarified. Thus, Teflon

is used as the model in these calculations.

In the method described here, as long as the state of the main

current and the state inside the object are given, it is possible

to carry out automatically the above-mentioned processes (1), (2),

and (3), and the ablation physical quantities can be calculated in a

unified manner as far as any point downstream from the stagnation

point of a blunt-headed object. Such methods of direct solution

usually rely on the memory capacity of a computer, but in the H-W

method the upstream solutions are discarded as soon as they are used.

This makes operations less difficult, and this is one of the advan-

tages of the method.

_ _ _ _ _ _ _ _ _ _ 
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2. Notation

velocity of sound

Chapman-Rhnfsinl number

specific heat at constant pressure

specific heat at constant volume

two-component diffusion coefficient

boundary layer thickness

square error in two-point boundary value problems

total enthalpy function

effective ablation heat

concentration function

latent heat of sublimation

molecular weight

Mach number of main streamj

ablation velocity

Prandtl number

pressure

heat transfer rate

gas constant

radius of curvature of

Reynolds number

radius of curvature of

object

cylinder

Schmidt number

transformed coordinate system

temperature

time

velocity components in spatially fixed system of coordinates

velocity components in system of coordinates fixed to object

surface sweepback velocity due to ablation

spatially fixed system of coordinates

system of coordinates fixed to object

boundary conditions

z: transformed concentration function

6
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a:

C:

Cp:

Cv:

D:

d:

E:

H:

Heff:

K:

L:

M:

M :

m:

Pr:

P:

q:

R:

Rb:

Re:

r0:

Sc:

(s, n):
T:

t:

(U, V):

(u, v):

vb:

(X, Y):

(x, y):

X.:
J



y: specific heat ratio of air

6: error in two-point boundary value problem

e: criterion of square error

K: heat transfer coefficient

A: cooling effect due to ablation

p: coefficient of viscosity

p: density

transformed ;stream function/

Q: stream function]

T: transformed enthalpy function

Suffixes:

a: state with ablation

b: state inside the object

e: state at external edgelof boundary layer

g: state of the gas phase

thn: n state

no: state with no ablation

s: state of solid phase

sh: state immediately after shock waves

t: state at stagnation point of main streai

w: state on wall of object

0: state at stagnation point of object

1: state of ablation gas

2: state of external air

c: state of main strearm

( )': differential

( ) : dimensional quantity

( ) : quantity for non-dimensionalization

3. Basic Equations

Let us consider semi-stationary ablation, in which the surface

sweepback]velocity is more or less uniform and does not depend on

the time. It is assumed that all variations caused by ablation are
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confined within the boundary layer and haveno effects on the exter-

nal current. There are no chemical reactions inside the boundary

layer, and the boundary layer consists of a two-component mixed gas

(the gas caused by ablation and the external air). The thickness of

the boundary layer is assumed to be sufficiently small in comparison]

with the radius of curvature of the object.

In a flow field such as that shown in Figure 1, the compressible

laminar boundary layer equation for a hemispherical object (Appendix

A) can be written as below after

transformation of the independent
Shock wave_

variables by means of the Less-
Shock wave. ayer

Dorodnitsyn transformation: Boundary
oundaryl

s=jepeu.r.2dx, j=pur.(2s)"fP dy (3-1) layer

(C'+{((3.2) Ma, U. Tb_ 

(•rY)'+ (b+rC)±{C(c-Pr3) aTtz'}\

+ wu,,' {C(.- P,),"(d' +1)} =R2, (3.3) 

,lc , Figure 1. System of coor-
C (S¢2)'+a'(s+i)=R. (3.4) dinates and flow pattern

Here, ( )' is the differential re-

lated to n, and

a=l-Cp1CP2 2ds | (3-5)

C, Pr, and Sc refer to the Chapman-Rubesin number, the Prandtl num-

ber, and the Schmidt number (Appendix B); they are each functions

of P, T, and z. Here, the values of ~', T, and z are the following

'-u=/u.-1, r-H/IH.-1, z-K t (3.6)

The stream function Q is defined as follows :

ay =pur,; a -=-pvr.,

D +~~~
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Therefore, 4 is expressed as follows:

2= s opvsrodx-. (3.8)

If we use an equation of state for a perfect gas, the following

will apply because of the condition that there are no pressure vari-

ations in the y direction in the boundary layer:

e. M. T
1

a ={1_ (1_ M,)} T. | (3-9)

Due to the equation for the total enthalpy (A.16), the temperature

will be

T _+1-u.2W(0+1)2I (3.10)
T. (1-az) (1-;u.2W) (3. 10

In the basic equations (3.2) - (3.4), the dissimilar terms

R1, R2, and R3 on the right side will each be:

R -sY-
U (3.11)

R2=2s((O,+l),ra('+ 1) ?,a (0+0)
Ri2s{(3'+ 1) as 0as },) ((3.112)

Ra=2s{(( + as as+ ) (3.13)

The dissimilar terms will be expressed by these items and by the

differential term of s. The treatment of this will present one of

the problems. That is, because of the presence of dissimilar terms

R1, R2, and R3, it will be impossible to express the flow field by

means !of one similarity| parameter rn, and a separate solution must

be sought for each station (that is, for the various values of s).

4. Boundary Conditions

Since the basic equations (3.2) - (3.4) are, respectively,

three-step, two-step, and two-step differential equations with-T'-e----

spect to 4, T, and z, altogether seven boundary conditions are neces-

sary. However, only four conditions are explicitly given: the con-

dition that there is no slipping on the wall (u
w

= 0), and the
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condition that there is connection with the external flow at the

end of the boundary layer (u + u e, H + He, z - 0; y + Ye)
. When

these are written in transformed form, they are as follows:

=o;~=0;=-l, / (4.1)

7= ; 0 ' =o, 0 Z=o (4.2)

However, the following thrJe constraint| conditions occur on

account of the physical conditions on the surface of the object where

ablation takes place.

(i) Relationship between wall temperature Tw

and mass loss rate ml

When an ablation _substance is considered, its mass loss .rate

Im is a characteristic function determined by the wall tempera-

ture Tw and the pressure p. It can be written as follows:

m=F(Tw, P) (4.3)

However, various test results and data [13] have shown that in the

low-temperature region the effects of pressure are so small as to

be almost negligible. Rashis and Hopko [14] have obtained this

relationship for Teflon as shown in Figure 2. When this is approxi-

mated in a quadratic equation, it becomes:

m=-p*V= (PV)w

.....%+AT2W (4.4)=A1 +A2 Tw+ A3 w(

One can thus obtain an approximate equation to take the place of

equation (4.3).

On the other hand, from the aerodynamic viewpoint, if the state

of the main stream is given, the relationship between the wall tem-

perature T
w

and the mass loss m can be described by the: 

following equation:

m=G(TW~. ..) (4.5)
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1.0

1.0 Rb=2.00cm

0.0 3.. -

500 550 600 650 700 75
TX'C)

0 I I
Figure 2. Chemical rela- 500 550 600 650 700 750
tionship between the wall TU'C)
temperature and the mass
loss rate for Teflon Figure 3. Aerodynamic rela-

[T14] tionship between the wall
temperature and the ablation

rate for Teflon

Here, Q is a quantity which is

determined according to the Mach

number of the main ltreaIm, the state of the stagnation point of the

main streami, the state of the object, etc. T and m are unknowns

in Equation (4.4) and Equation (4.5), and it is anticipated that the

two unknown numbers will be determined uniquely with respect to

various ambient conditions by converting these two equations into

a simultaneous equation. In actual fact, the relationship in Equa-

tion (4.5) was obtained as in Figure 3 according to [5]. By over-

lapping Figure 2 and Figure 3 diagrammatically, it is possible to

obtain the solution with Tw and W at the respective intersection.

In this report, we proceed one step further and attempt to-a-t----

tain a comprehensive solution, in which Equation (4.4) is also in-

cluded as part of the boundary conditions. When Equation (4.4)
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is written in transformed fashion, it assumes the following

appearance:
(pa) w=wJ 2s 1 1J

X{ A7+AT ,TI +3 X,(7eT)2) I (4.6)

(ii) Mass equilibrium on the surface of

the object

Kiw, the concentration of the various component gases on the

surface of the object, cannot be designated without relation to the
.iwall velocity T . When V is determined, kw will also be deter-w w iw

mined. Generally speaking, vi, the velocity of the it h gas in the y

D aK, 
direction, is the sum of the diffusion velocity -K, a and the con-

vection velocity v. Therefore,

pK, = --paK, +K~i (47)

Only the gas components produced by sublimation will be blown away

from the surface of the object. Therefore, one can posit the physi-

cal condition that there is no movement of the external air inwards

or outwards along this surface. Under this condition, the v2w with

respect to the external air (suffix 2) will be 0. If we use the

fact that K 2 = 1 - K, we obtain the following:

PwJ( -a).+. -V. (1-K. )=o0 (4.8)

Equation (4.8) can be rewritten as follows in transformed

fashion:

( SC -Z 1Z4 .9r ) 2 (a

(l1)At'aconstant stagnation point temperature, if there is an increase
of Tw there will be a decline of the temperature gradient inside the -

boundary layer. Consequently, the thermal input towards the surface
of the object will decline, and there will be a smaller ablation
velocity.
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(iii) Energy equilibrium on the surface

of the object

On the surface of the object where ablation is taking place,

part of the heat quantity (ays which is about to be transferred

through the boundary layer to the object will be absorbed by the

latent heat of ablation, and the remainder of it will be transferred

inside the object. Thus, if we take into account the conduction of

heat in the x direction inside the object, the energy equilibrium on

the surface of the object can be written as follows:

ay )", r =L s p). + (b{( ay ) |

+(aT)2 }a (4.10)

The second item on the right side is obtained as the solution of the

heat conduction equation for the interior of the object:

_2T 82T _ - T *_ aT
+y2+) =phCPb t=mC,YC d l (4.11)

Nevertheless, since Equation (4.11) is an elliptic partial differen- /6

tial equation, it would be impossible to combine it in a simultaneous

equation with a parabolic boundary layer equation and apply the H-W

method. Furthermore, with the range of stagnation point temperatures

being handled here, heat diffusion in the x direction is negligible

in comparison with that in the y direction [5]. Therefore, Equation

(4.11) can be written as follows:

_ d2= mC, aT ( 4.12)

Here, m = - Pb Vb = ( v)w'

Let us solve Equation (4.12) under the following boundary

conditions:

¢=O ; T= Tr, } /
y=-yb; T = Tb ( 4.13)

In dimensionless form, the following solution will be obtained:

T=cl exp( R Y)+c2 (4.14)
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Here,

cl -(T-TC)/ exp--y' 1

2 -T.-cl,( 4 .15)
P A_=Cp,o *i R, N (pV).Cpb 
R K2 .1. Kb

Therefore, the following will apply:

(aT) P Tb-T,.

(ay/·~·- R p(-w 'R

(Rok /- R cxp( BY ) } (4.16)
(T = TP p.. 2 (a )

By substituting Equation (4.16) in Equation (4.11), we will obtain

the following equation for energy equilibrium in transformed fashion:

az'. (?F.+ 1) +(1-az.)(l-Wu.
2

)/ 2s
_1-az. ,p.K..ro. ( 4.17? )

R Cp, JE,,+E1. 

Here,

E,= {P Tb- T.2

R I exp(- PR y) -- 1} ', (4.18)

E2 '= { eN Ts ) } '2

I=L/CT,zT.

The wall temperatures T
w

appearing in the various equations can

be expressed as follows, in accordance with Equation (3.10):

T.=(Qri+l)/(l-az.)/ (4.19)

They are related to Tw and z
w

5. Calculating Methods

5.1. Hartree-Womersley Method

The H-W method, which was described in the Introduction, trans-

forms into the difference system the dissimilar items R1, R2 and R3

on the right side of the basic equation, which is a parabolic partial ?

differential equation, as well as the differential terms| having the
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form of 3F/Ds which are contained in the boundary conditions. The

equation is thus reduced to an implicit ordinary differential equa-

tion. The two-point differences of equal intervals used here were:

OF _F- F_-~/ (5.1)
as . s !

However, the precision will improve further if three-point differences

with variable intervals are used. Nevertheless, the convention velo-

city distribution on the surface is smooth in ablation problems.

Therefore, there is no necessity for discussing the difference sys-

tem with reference to the discontinuous convection velocity which

was dealt with in [15], and it will be sufficient to use two-point

differences.

According to the calculating diagram in Figure 4j the solution

for the nth point (the suffix n is omitted in order to make the equa-

tions easier to read) will include

the solutions for points upstream v n-2 n-1 n

from it. That is, at the nth So lu- Solul 1I to t ion I tiontion 
point, one will use Fnl, the known Fn-2() PF.() t--

solution for the points upstream,

and the ordinary differential equa-

tion for r will be solved in the In -2 n-I S

direction. The dissimilar terms
Figure 4. Calculation dia-

on the right side of the basic Figur e 4. Calculation dia-

equation will be written as follows:

R, AsL{. ~+1)(3 - 1)-1 () ig)}1

R2I=ns {(0 +1)(X-X",l) ( f Bl~')}(5.2)

R3= 2}

As mentioned above, n 1 n- Zn-l are known solutions.

,The stagnation point of a blunt object becomes the point ' ! ,
of departure for calculations, and there are no solutions for points

upstream from it. However, with respect to the finite difference 3

amplitude at this point, As, it can be stated that 2s/As = 0,. and

therefore one can obtain a solution corresponding to cases where

R1 = R 2 = R3 = 0 (similar solution).
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5.2. Two-Point Boundary Value Problem

The ordinary differential equation obtained above does not have

the necessary number of boundary conditions on the wall, and it

therefore becomes la two-point boundary value problem of the type

described in the Introduction.

Let us posit the following in order to give the problem a uni-

versal validity.

"In a boundary layer type ordinary differential equation with /7

n steps (asymptotic behavior), m (m < n) boundary conditions are

given at the lower limit of the domain, and (n - m) of the conditions

are unknown. These (n - m) unknown boundary conditions are linked

by means of Z (Z < n - m) constraint conditions. At the upper limit

of the domain, (n - m - Z) boundary conditions are given. We seek

a solution satisfying these conditions."

Let us express the boundary conditions in terms of Xj (j = 1,

2, ..., n). First of all, the conditions which are explicitly given

are X1, X2, .... Xm (their number is m). In the initial value method,

(n - m - Z) boundary conditions, excluding this and the Z constraintjI

conditions, must be supposed as the departure values for numerical

integration. These boundary conditions which are to be supposed as

expressed as Xm+l' Xm+2' .... Xn_l [their number is] (n - m - /)]. If

these (n - m - 1) conditions are supposed, the remaining Z conditions

will be determined from the ?constraints conditions, and therefore the

solution inside the domain will be governed by the independently

as ume +2' Xn_
1.

If the solution is expressed as S.,

it can be written as follows:

Sj =Sj (x.+,, X.+2,. .... X.,)
1

5-3
(i =1, 2, · , n)

(1:
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In the present problem, n = 7, m = 1, and Z = 3; the conditions

which are given explicitly are:

x,=.a=-l) ((5.4)

and the conditions which are to be assumed] are

x2=0"r, x,=.-, X4=Z. (55)

The conditions which are determined via the 'constraints condi-

tions are:

X5 s_.=X 5 (X2, X3 , X)=(446)3 *)
X 6-- Z'..=X 6 (X2, X3 , X4)=(4.9)>4 (5.6)/
X7 --,'.=X 7 (X 2, X3 , X4 )=( 4 -17) )

The solutions inside the boundary layer are:

S,_ =Si (X2, X3, X4 )
S2r_'=S2 (X2, X3 , X4)
S3=,, =S3(X2, X3, X4)

S4,-r=S4 (X2 , X3 , X4) (57)
Si'"=S5 (X2, X3, X4)
S6 -Z =S6 (X2, X3, X4 )
S7?z'= S7 (X2, X3 , X4)

As was mentioned before, the number of conditions necessary at the

end of the boundary layer is (n - m - Z). In the present case, this

number would be 3. They are given by equation (4.2). However, as

was mentioned in the Introduction, in these boundary layer type

equations, all the physical quantities have an asymptotic behavior

at n + a. Therefore, the following also ought to apply supple-

mentarily:

1=-; 0"=o, 0=o. ,'=o (5.8)

If the conditions in Equation (5.8) are not present, there may be

solutions in whicht a certain quantity will overshoot along the way

(Figure 5), so that the solution is no longer an asymptotic one.

In order to avoid this phenomenon, the supplementary conditions/ ._

in Equation (5.8) become necessary as full conditions.
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Let us use suffixes I and II

to indicate the first approxima-

tion and second approximation of

solutions at the external edge off

the boundary layer (the upper

limit of the domain) by iterative

calculations. _jIn this case, the

modified quantities of the de-

parture values (the supposed un-

known boundary conditions and the

boundary conditions determined by

the constraint conditions) and

the modified quantities of the

solutions will be:

ZF
z

L 
Figure 5. Explanation of
solutions with overshoot

in the center|

AX,=(X{)II-(Xl)I, (i=2; 3. 4)

AS,-(Sj )i -(S ) I, (=2 3, , 7)

Furthermore, according to the vajriational principle:

AS, =EDAXi (j- =2, 3, ' ..... 7)
i=2

(5.9)
(5.10)

(5.11)

D
Here, the operator DX is defined as follows:DX.

1

D _ + t ax
ff-- 3- /.ax (5.12)

According to Equation (5.10) and Equation (5.11),

(Sj)i =(Sj+C DX Xsi)I (j=2, 3, ..... 7)
1=2

Since Equation (4.2) and Equation (5.8) are the desirable conditions

at the external edgeof the boundary layer of (Sj)II, if 6j is the

error between (Sj)II and them, it will be:

-j =S + A (i=2 3. ..... (5.14)

The suffix II was omitted here in order to give universality to the

approximations. It is clear that the necessary and sufficient condi-

tion for convergence of the solution is to give 6j a value of 0.

For this purpose, let us take a square error of
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·=BE~,=2oj~ ~(5.15)

and assume that the convergent solution will be when this assumes a

value of 0. In actual practice, let us take a small positive number

and adopt the following as the criterion for convergence:

E :_o (5.16)

The conditions for the least square error are obtained from

the following:

(i=2, 3, 4 (5.17)

In the present problem,
4

aEX)
=

0
9 21 + e2tAX{,

i=2

aE
a (-X) = ° 031 +e sAXS=o,

i.2 (5.18)
.4

a (X=o 9 ) 41+ 194'Xc= 0
/=2

Here

= F[/ DS)2

j=2

Ot w DS\( DSi\

j=2

o.l =E(D,,)S'

(i=2, 3, 4, k=2, 3, 4)

The following is obtained from the above simultaneous

equation:
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921 923 924
AX2= - e31 933 e32 /DEM,

941 943 944

822 821 924

AX3= - 932 e3 1e34 /DEM

942 e41 e44

e22 e23 e29 (5.20)
AX4 = - 932 933 931 /DEM

942 943 e41

911 812 913

DEM e 821. e3 O3
e3l e32 633

In one trial, a modifier term of AXi is added to Xi, giving X
i
+ AXi,

and we move on to the next trial.

However, in order to obtain AXi in the manner of Equation (5.20),

it is necessary to find, by some method or other, the value in Equa-

tion (5.19) taking the form of DSj/DXi. This is necessary at all the

stations in the boundary layer. Differentiating the basic equation

by X i (i = 2, 3, ..., 7), we obtain the disturbance differential

equation:

aX, a Xi 
+ dXio Xai x' (5.21)
a X ,,i YalJ Xi(,)+ ax

dxc( Pr ) ( +,): + ddf

+ C(Sc-Pr) aTz'
+ axd PrSc Y

+ Wu.2 i{C (Pr )-(0 +1)- 
ax, PrPx-

. (CA'\l, az' a) aR
3

d (5.22)

aX Sc )E )ax, =X ax - (5.23)
(i=2, 3, ..... , 7)

Solving this equation under the following boundary conditions:
= S;Xfi = (i=j) 

=0 (i7j)
(i, j=2, 3, ..... 7) (5.24)

let us substitute this solution, together with the values of 3Xk/3Xi

(i = 2, 3, 4, k = 5, 6, 7) (known on account of the constraint|
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conditions between the boundary conditions), in Equation (5.12), the

D
defining equation of DX . The S. in Equation (5.24) is a function

determined as in Equation (5.7). All of the boundary conditions

(departure values) for the disturbance differential equation obtained

here.are given as in Equation (5.24). The solution is obtained by

making a simultaneous equation of the total of 21 differential equa-

tions, including the 3(n - m) disturbance differential equations

(there are 18 of them in the present problem) and the three original

equations. The square error is calculated at each of the calculating

points (at each of the scale intervals of the numerical integration

in the rn direction). Nachtheim and Swigert [10] established in ad-

vance a suitable nstop (point for stopping calculations) and investi-

gated the effects of its value on the solution. In this report, we

posit the following criterion:

IsJ (V)l ,jil (. = constant) (5.25)

Solutions departing from these conditions are regarded as divergent

solutions, and the calculations are stopped at that point. This

point is called n = nstop. Then we proceed to the next trial. The

end point of the calculating region given in advance is also called

n = nstop. In this way, the convergent solution is one which matches

the conditions of Equation (5.16) while also fulfilling the condi-

tions of Equation (5.25). Thus, the n = ne satisfying the conditions

of Equation (5.16) will correspond to the external edgelof the bound-

ary layer, and it is possible to find also the thickness of the

boundary layer, which was one of the unknown numbers.

The flow chart for the calculations is as shown in Figure 6.

21



Figure 6. Flow chart for the H-W method and the method of solution
for two point boundary value problems

1 - beginning; 2 - read in conditions of main ,istreaml and inside the
object; 3 - stagnation point; 4 - assume initial values of Xi,', X3,
X4; 5 - X5 , X 6, and X7 are determined from constraint, conditions;
6 - original differential equation and disturbance differential equa-
tion are solved as a simultaneous equation; 7 - E is calculated;-8 -
E is written out; 9 - end; 10 - does the solution converge?; 11 -
(downstream region); 12 - obtained solution is included in R 1, R 2, R3;,
13 - solution is written out; 14 - AXi (i = 2, 3, 4) is calculatedl
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6. Numerical Calculation Results and

Considerations of Them

The Teflon (polytetrafluoroethylene) used in the numerical cal-

culations is a fluoride polymer, but it decomposes into a monomer

upon pyrolysis. According to Madorsky [16], more than 90% of it is /10

C2F
4.

Therefore, let us here regard C2F 4
as the ablation gas and

assume that the boundary layer consists of a two-component mixed gas

(air and C2F4 gas). The physical values of these substances are as

follows:

C2 F 4 gas: Ml=100 o

C,= 0. 32 cal. gr - l. .°K-'

l =5. ooA I
Qi(2,2) =0. 90 /

(See Appendix B)

Air: M2=29
=Air: 0. 28 cal · gr

-
l · OK-t

--2 =3. 62A
D2 (2.2) = 0. 76

(See Appendix B)

Solidt Teflon: Cp,=0. 22 cal . gr-l. OK-1

pb=2. 19 gr · cm- 3

b = 6.00 X 10-4,cal.cm-'.sec-L. K-'

L=35kcal . mol-1

The following are assumed as the conditions of the main streami:

Moo=5. 74, T,=8000 C-15000 C, T,=200 C,

P,=0. 5atm-2atm, Rb=0. 75cm~3. 00cm

In Figures 7(a) and 7(b) is shown the state of convergence of

the departure values of a two-point boundary value problem when-t-he---

calculations were performed according to the method described in the

preceding chapter. The calculations were carried out on the HITAC-

5020 computer at the National Aerospace Laboratory. Figure 7(a)

shows the state of convergence between q"' ' w' Zw' the values
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Figure 7. State of convergence of
solution:

(a) convergence of initial value:

x=O, .T,=10000 C, R-=l. O0cm, p,=latm. 

:+O

I

m.

I -1.

Figure 7. State of converg-
ence of solution:

(b) velocity profile,

x=O, M=1000°C, R=l. 0oocm, A=latm. t

assigned at random at the beginning (number of trials = 0), and

w' Y 'w' Zw', determined according to them. The square error E in

each trial is also shown here. The square error was calculated at

n = ne. As for the divergent solutions departing from the criteria

of Equation (5.25), they are those at the maximum n position (ntop)

as long as the conditions of Equation (5.25) are satisfied. The

following were adopted as the conditions of Equation (5.25):
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W2 = 1.5 (for $')

W3 = 1.0 (for 9")

W4 = 0.5 (for T) (6.1)

w5 = 2.0 (for 1')

w6 = 0.5 (for z)

W7 = 2.0 (for z')

The state of convergence of the velocity profile is shown in

Figure 7(b).

When a small positive number E is determined, as in Equation

(5.16), it becomes a parameter for determining the boundary layer

thickness d. Therefore, attention is focused on how its value is

selected. The error will be 0.01 if the external end of the boundary

layer is the point where the physical quantities in the boundary layer

amount to 99% of the main streat . Therefore, a value of Eo.o012x6=0.0006/

is desirable. Thus, a value of E = 10 will be quite sufficient.

In actual fact, according to the calculation results, the relation-

14ship between £ and d (normalized at d when e = 10 ) will be as shown

in Figure 8.It is only natural that if a large value ofe is adoptedJ the|

boundary layer will be evaluated with a reduced thickness. Even if

the value is less than £ = 10 , it is known that there will be a

considerable reduction. In view of the above considerations, E4E=10-~'

was used as the criterion for convergence.

The next question which arises is whether a uniform value can be

obtained regardless of the departure values (the uniqueness of the

solution determined by the initial values). The departure values /12

were varied ("w = 0.0, 0.25, 0.50, 0.75, 1.00; Tw 0.7, 0.9; zw

0.01, 0.21, 0.41) in order to study the numerical uniqueness. As a

result of these calculations, it was confirmed that in all cases

there was a convergence to a uniform solution. Typical examples of

this are shown in Figure 9. Uniform solutions are obtained even

though the number of trials differs. It is possible to select these

departure values at random, but if the values are selected in the
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Figure 8. Effects of the convergence criterion
on the boundary layer thickness

x=O, T,=1000°C, R=l. Ocm, ps=latm.(

vicinity of the anticipated values, naturally this will contribute

to speeding up the calculations.

The calculations performed here were for cases when there were

three unknown boundary conditions (departure values) and three

constrain conditions. However, it is known that this method is valid

when a similar method is applied in cases with one or two departure

values [15] (the work is much easier, since there are no constraint

conditions). Therefore, the general argument in §5.2 is believed to

apply also in cases when there are *four or more unknown boundary con-

ditions. (The task of numerical confirmation is left for future

study.)

As was mentioned in §5.2, it is desirable to consider the sup- 4

plementary condition equation (5.8), as this will give more perfect

results as the necessary and sufficient conditions. However, even if

this is omitted, there ought not to be any deficiencies as far as the
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necessary conditions are

concerned. Assuming that

the former is Case 1, and

the latter is Case 2, i.o 0.40

calculations were per-

formed under the follow- rwTw zw

ing conditions: Tt =

0.8
12730 K, Rb = 1.00 cm, 0.30

ffb 0.30

= 1.0 atm, and the de- 46-t

parture values of "w =

0.0, z = 0.01, T
w

= 0.90. 0.6

When both cases were com- 0.20

pared, the results shown

in Table 1 (convergence 0.4 Departure values

values of the departure I w=o.o

values) were obtained. I A Tw=0.70
[]zw=0.01

There were no very great I 0.10
~~~~I Of;Y=0.75

differences and, as was 0.2 Tw=0.90

only natural, the calcu- I zw0.

lating time was less in I

Case 2. The lack of dif- J! ! /

ferences in the converg- 0 0

ence values is based on 0 1 2 3 4 5 6

the nature of the solu- No. of trials

tion, as described in Figure 9. Uniqueness of the initial
values

§5.2. That is, there are

no overshoot solutions x=O, M-=5.74, T,=1573 0 K, Rb=0.75cm, ,=latm. I

(Figure 5), and all the

physical quantities have an asymptotic tendency moving_ twards 0.

All the calculations below were performed according to Case 1, taking /13

into consideration the necessary and sufficient conditions.

A profile of the various physical quantities inside the boundary -

layer obtained in this manner is shown in Figure 10. If cw and Tw
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TABLE 1. COMPARISON OF CALCULATION RESULTS
BY DIFFERENCES IN THE BOUNDARY CONDITIONS
AT THE EXTERNAL EDGE OF THE BOUNDARY LAYER

[Case 1: Including the supplementary condi-
tions of Equation (5.8),. Case 2: Not in-
cluding the supplementary conditions of

Equation (5.8)]

are known, it will be possible to obtain the ablation rate m and: '

the surface temperature Tw from the following:

-- ou*p.uro- 2 s 2 s
M=T - poo V 2 s E4(1 As)-As (6.2)

( 6.3)

Figuresll(a) and (b) show the effects of the stagnation point tempera-

ture on the ablation velocity and the surface temperature, plotted

with the radius of curvature of the object as the parameter. When a

comparison is made between cases when the thickness of the object

was made infinitely great (yb.- a) .that-'is, 'fw'ebn the object was a

B solid hemisphere - and cases when the thickness of the object was

finite (X/2 of the radius of curvature of the object; Yb = 0.5 Rb)--:

tha-t-is, when the object was a hollow hemisphere with a thickness _._

half the object's radius of curvature - it is found that in the ,,

latter case the ablation velocity and the surface temperature are

rather low, while the heat transfer rate, shown in Figure 11 (d),

increases on the contrary. This is due to the following fact.

28

Case 1 Case 2

Number of trials 6 5

O- i --0.02873 -0.02895
. ,, 0.79907 I 0.79922

T. 0,71379 0.71418
z. 0.05375 0.05381
z'. -0. 02719 -0. 02749
E 0.00008 0.00007

___ , _ _....__ 3.7 3.7
Calculating time .

(using HITAC 50.20S) : 132 Se 104se[



Since a uniform tempera-

ture T was assumed at I
b

y = Yb, in the latter 1.0o o0 0 

case it is necessary to

maintain a lower tempera- /17

ture on the surface of the 0.9 / -0.1

object and to suppress the /
ablation effect. The

thermal input increases

for this reason. 0.8 -0.2

In order to indicate --

the effects of the object
0.7 -0.3

thickness, calculations

were made of the ablation

velocity at the stagna- - 0.05

tion point of the object 0.6 -0.4

and the surface heat

transfer rate at Tt

10000 C. The results are -20 -0:5.0.5 -1.0 0
shown in Figureq12 (a) 0 1 2 3 4 5 6

and (b). These results
Figure 10. Profile of the physical
quantities in the boundary layer

object becomes thinner =o T=isoooc, R=. 00cm, p=latm.

at the same thermal input,

there is an increase in

the heat transfer rate because of the necessity to suppress the

ablation velocity; this results in a deterioration of the ablation

cooling effect. As the object thickness Yb becomes smaller, the

deterioration of the cooling effect proceeds rapidly ahead. Although

there is little possibility of using an object which is excessively

thin, it is believed that it would be possible to put into actuafl-us-e

a hemisphere of Rb 1.00 cm. The difference between the surface /18
b

heat transfer rate of an object of yb = 0.25 Rb ' 0.5 Rb and that of
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x=O, M-o=5.74, p,=latm.1

this method (Yb = 0.5

[51 = .

10.15

Zw

0.10 _-

ii 

0.05

,. 9I 500 1000
'T,('C

1500 "

5.0

t~o C ~,=o.wt, ..... ~i=0.5:I

4.0 -. =0.7

1.(

3.0

2.0 /

·1.0

0
500 1000

Figure 11(c)
ablation gas
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Figure 11(d). Surface heat trans-
fer rate when there is ablation

x=O, M-=5.74, P=1atm~.
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Yb/Rb

12 (a). Effects of the thickness of the
object on'the ablation rate ; -

x=O, Moo=5.74, T=12730°K, pT=latm./

Figure 12
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ject on the surface heat trans-

fer rate
x=O, M=5.74, T,=12730 K, pi=latm./
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Figure 13(a). Heat protection
effect], of ablationi

x=O, Mo=5.74, P=1 atm.|
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Figure 13(b). Cooling effect
of ablation

x=O, Moo=5.74, p,=latm, .y=,,,

an object of Yb = X (a solid hemisphere) is only about 6% at most.

This is attributable to the good thermal insulation properties of the

ablation substance itself.

Figure 11(c) gives the concentration of the ablation gas on the

object surface, which was calculated at the same time. It is clear

that there is the same tendency as with the ablation velocity.

Figure-l13(a) and (b) show the cooling effect of ablation. First,

Figure 13(a) shows the ratio between the heat quantity ~no - qd

nowhich is protected by ablation and the heat quantity qno when themes...

is no ablation. It is clear that it increases together with the

increase of the stagnation point temperature of the main [stream~ and

that the cooling effect improves at higher temperatures. The fact

that the cooling effect is better in a solid hemisphere than in a
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hollow one points towards a reasonable result, namely, that a larger

ablation effect gives a better cooling effect. If we define the

cooling effect of ablation as:

AH.= (6.4)

the value of this will display results of the same type as those

above, as is clear from the broken lines in Figure 13(b). When cal-

culations are made of the effective heat of ablation, which is often

used as an index of the ablation effect [17],

Hof = q.° (cal. gr-1) (6.5)
mo

this also gives the same results as those for A, as is shown by the

solid lines in Figure 13(b).

The fact that there is a superior cooling effect when there is

a bigger radius of curvature can be explained in terms of the follow-

ing circumstances. The boundary layer in this case becomes thicker,

and there is a larger heat quantity to be abbsorbed` inside the

boundary layer ':jith the identical heat input] from the main strea-m.li

The slight differences from the results reported in the literature

[5] are attributable to the manner of evaluating Equation (4.4). If

Equation (4.4) is further refined, it is thought that this difference

will become smaller. The uniqueness of the solutions obtained from

this direct solution method is guaranteed also by the fact that there

are no big differences between these solutions.

Ablation is accelerated when there is an increase in the stagna- /19

tion point pressure of the main current. In Equation (6.2), since

-* 1 -
v is in direct proportion to the 2 power of Psh [refer to Equa-

tion (A.23)], the following will apply if the other conditions are

uniform: mo'p.h*op.h;(. Since P.oP,1 , in the final analysis the ablat-io-n

velocity will be equal to the 1/2 power of the stagnation point-

pressure.
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The first problem arising in numerical calculations by the H-W

method is the effect of Ax, the step amplitude in the x direction.

This effect is shown in Figure 14. The ablation velocity at various

points (x = 0.20, 0.40, 0.60) was

calculated for three different step 1.1

amplitudes: Ax = 0.20, 0.10, and

0.05. The results were compared x =0.20

with the hypothetical ablation velo- 0.40
1.0

city at Ax + 0, and it was found

that there was an error of only

about 0.3% at the most at Ax = 0.05.
0.9As can be calculated by Equation

(3.1). When Ax = 0.05, there will

be the following value for a step|

amplitude in the q direction of 0.8 
0 0.05 0.10 0.15 0.20 ' 0.25

q = 0.1: , 

as/(a) < 0013<+ (6.6) Figure 14. Effects of
amplitude Ax'in H-W method

This also fulfills the stability Tt=9700C, R=2.83cm. .

conditions for the difference solu-

tion of a parabolic partial differential equation and is believed to

be suitable with reference to the numerical treatment. Since s =

1 4
1 x near the stagnation point, it is true that As = 0.003 even when

2
Ax = 0.10, and the stability conditions are satisfied when As/(Aq) =

1
0.3 < 2. However, the conditions become unstable downstream from

this. In view of the above results, the calculations were carried

out with Ax = 0.05.

In Figures 15(a), (b), and (c), the ratio between the ablation

rate tmi_(x) in the flow direction calculated in this way and that at

the stagnation point is shown. The test values and the solutions __/20

obtained by the microdisturbance theory derived from [5] are also

shown for the sake of comparison. The present solutions were seen

to have an even better correspondence with the test values. Stable

solutions can be obtained only up'to about x = 0.7, and it is
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Figure 15(a).Variation oft
of ablation velocity

(a) Mo=5.74, T.=970°C,
R.= 2. 83cm, ,= 1 atm.

impossible to obtain any solutions

downstream from this point on ac-

count of the essential validity of

the hypothesis and the accumulation

of numerical errors. The model

used in these calculations is that

of a solid hemisphere (b = 00).

The hypothesis of semi-

stationary ablation which was used

in developing the theory holds that

either the amounts of the varia-

tions do not depend on the time or

that the time-dependence is ex-

tremely small. The ablation velo-

city may justifiably be considered

a function of x solely. As is

Figure 15(b). Variation of_
,of ablation velocity

(b) Moo=5.74, Tt=1045 0 C,

R=1.40cm, p,=latm, x=0.05

1.2

1.1

1.0

0.9

0.8
I1

0.7

I

0.6

0.5
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o 0.2 04 0a6 08 n 1 
Fiv gV e 1 v5). V.r Ia.vi o f ]

Figure 15(c). Variation of| :
of ablation velocity

(c) Moo=5.74, T,=1120 0 C, R"=1. 15cm,
P=1 atm, ax=0. 05.
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shown in Figure 16, it has been observed in experiments [18] that,

after the elapse of a definite time, the relationship between the

surface sweepback distance 7land the time t becomes more or less

linear, and that mA- is either unrelated to the time or has only

an extremely small dependence. (2) In the case of a perfectly steady

ablation _019], the following would apply:

m(x) = m'cos ( R) (6.7) /21

The values are shown graphically for various different cases. The

slight differences are due, it is believed, to the dependence on

time. Within the range of lower stagnation point temperatures in

the main streamj, the thermal input itself is found to be low in the

experiments, while there is little heating at all points except those

in the vicinity of the stagnation point in the object itself. There-

fore, the distribution of the surface sweepback velocity becomes

smaller as one moves downstream from the stagnation point, and it

becomes more and more difficult for the semi-stationary hypothesis

to remain valid.

To sum up the results of the calculations, the ablation velo-

city at x = 0.6 can be expressed as in Figure 17 with the radius of

curvature of the object as the parameter. The distribution in the

x direction of the heat transfer rate and the surface temperature

are also calculated in a similar manner.

The question at issue here is the conduction of heat in the x

direction inside the object. Within the range of main current stag-

nation point temperatures handled here, this has a value which is

negligibly small in comparison with that in the y direction [5], but

within the higher temperature ranges it becomes doubtful whether

this is valid or not.. Popper, Toong, and Sutton [20] have recognized

(2)The fact that 7]increases in the negative direction at first
in Figure 16 indicates that there is elongation due to the thermal
expansion of the model.
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Figure 16. Measured values of
surface sweepback distance for Figure 17. Ablation velocity

Teflon [18] at x = 0.6

Mmo=5.74, p,=latm T,=1200 0 C, R--=1.21cm. Moo=5.74, P,=latm. 

the results obtained with the microdisturbance theory of the writer

and colleagues within the low temperature range and have obtained

good results with tests at higher temperatures using beryllium and

graphite as the materials. Their tests included the three-dimensional

heat conduction effect.

7. Conclusion

The direct solution method for sublimating ablation is one of

the most effective methods of thermal protection for objects re-

entering the atmosphere at hypersonic speeds. This method was

studied in a unified manner from the following three standpoints.

; 1

(1) Essentially, the ablation phenomenon ought to be deter-

mined by a combination of the chemical reaction process of the sur-

face substance and the aerodynamic heat transfer process in the
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circumference of the object. The numerical findings obtained here

indicate that, if the conditions inside the object and the conditions

of the main stream are given, it will be possible to solve the

boundary layer equation by adopting the chemical properties of the

surface substance as the boundary conditions on the surface of the

object and also by using the heat conduction inside the object as

the boundary conditions in the form of the energy balance on the

surface of the object. By solving the equation in this manner, it

is possible to obtain categorically the physical quantities such as.

the ablation velocity or the surface temperature.

(2) The Hartree-Womersley method was applied. In this method,

the differential term of one variable in a parabolic partial differ-

ential equation is replaced by a difference term, and the equation

is reduced to an ordinary differential equation. The solution for

points up to x = 0.7 downstream from the stagnation point was ob-

tained as in (1) above. Since the distribution of the ablation velo-

city in the x direction is smooth, the stability conditions are not

very rigid when the differences are taken.

(3) Since the number of boundary conditions on the wall'does

not satisfy the necessary number requirements, the ordinary differen-

tial equation obtained in (2) will be a two point boundary value

problem. One of the boundary conditions on the wall is known. Three

of the remaining six are completely independent', and the other three

are related in terms of constraint conditions. The presence of

constraintlconditions makes the problem more difficult. In this re-
port, the conventional initial value method was further developed,

and a least square error method was proposed at the edge of the

boundary layer. It was found numerically that this method can be

applied generally without regard for the number of unknown boundary

conditions or the number of constraint conditions. The problem of

sublimating ablation was taken as an example to prove this.

Calculations were performed by the above-described method,

using Teflon as the ablation substance. The calculation conditions

were the following: main Istreaml Mach number 5.74, main strea~
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stagnation point temperature 8000 C - 1500° C, main stream( stagna-

tion point pressure 0.5 atm = 2.0 atm, radius of curvature of the

object 0.75 - 3.00 cm, and temperature inside the object of 20° C.

The following conclusions were reached from the calculation resultsj

(i) Within the range of the calculations performed here, the

heat protection effect of ablation improves as the main !stream '

stagnation point temperature increases. This indicates the advan-

tages of the ablation cooling method.

(ii) When there is a greater radius of curvature of the object,

the heat protection effect increases because the boundary layer be-

comes thicker.

(iii) The heat protection effect is better in solid models

than in hollow models. However, thanks to the good thermal insula-

tion properties of the ablation substance itself, the difference is

not large, and there are possibilities that even substances with

thin walls amounting to about 25% of the radius of curvature canJ.

be put into actual use.

(iv) As for the ablation velocity distribution downstream in /22

the flow direction, there is a rather good coincidence when the main

stream] stagnation point temperature is above 1000° C, in comparison

with the solutions obtained by the microdisturbance theory and with

the test values. This indicates that this method can be applied

effectively to problems of this type.

It is expected that even better results could be attained if

the two-dimensional effect of heat conduction inside the object were

taken into consideration. However, in this case it would be neces-

sary to use some method other than the H-W method, and the analysis

at higher temperature ranges will be a task to be solved in the -

future.
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With reference to the solutions of the two point boundary value

problems, the author wishes to express his heartfelt gratitude to

director Horikawa and specialist Watanabe of the Measuring Department

for enabling the author to study the behavior of the solutions by

means of an analog computer.

APPENDIX A

Boundary Layer Equations

The following is the boundary layer equation written in terms

of the system of coordinates (X, Y) fixed in space for the flow pat-

tern illustrated in Figure 1.

Mass conservation:

a (pr-)+a (pUr-.)+ (PVr )=0.Oat ax a Y
(A.l)

Momentum conservation:

P at + ax -p- aU1

Ao at Y.

o~ rox
P=-o'ofk -',
:b g~ 

(A.2)

(A.3)

Energy conservation:

-aj+ H - aH + pve a -aP
at ax aY at

:.a - +Jr+ a p H+ i( - al2d

a{ e 1

iL

(A.4) 

40



Diffusion:

aK + UaK + aK

ay ay) I (A.5)

Here, the quantities which have no suffixes 1, 2 are the mean quan-

tities of a two-component mixed gas.

C,=C,,K+C 2 (1 --K) (A.6)

The concentration is supposed to be K1 = K. Since K
1
+ K2 = 1, it

is true that K 2 = 1 - K. Therefore, the analyses given below have

been given a unified concentration of K.

Since sweepback occurs on the surface of the object at a velo-

city of vb, we can use the following transformation to coordinates

(x, y) fixed on the surface of the object:

t-tx=X, y=Y-Vh(x) 7j (A.7)

-= o, v= v- (x) V

If we use the semi-stationary hypothesis, we obtain:

d =daay =-_va -, - (A.8)

By means of these, it is possible to transform Equations (A.1)

through (A.5) into a simultaneous equation at the system of coordi-

nates (x, y). Furthermore, we can use the non-dimensionalized

quantities expressed by:

X=x/Rb, y=y/y*, r.=r./Rb,
U =.l/u*, ,,=V/V,*, P=p7PIA,
T= T/T,, H=H/C,2T,, p-p/p,u*,(

D-D/( p.**.*), X = t2, p= p/P.I(A.9)

The-following non-dimensional simultaneous partial differential -

equation can thus be obtained:

41



a (pur,) a (pvr,)
ax + a O,' (A.10)
au +a au p + a au11

ap - N
ay R pU20 (A .12)

aH aHa ,8 a
pu + P aVy- -, P ay H

+W I 8 (1_ 1 )l 8u2 )
ay Pr 2 ay

a - 1 ay { )PD(CI,-C2) TayA
(A.13)

aK+ aK aa DaK (A 14)PU-ax aOy '= y" 0y 7,

p _=RT, (A.15)
H=C,T+ - Wu2 . (A.16)

Let us assume that the shock wave layer is ineliastic and has a

constant;density._j Since it is assumed that the velocity component

on the surface of the object which is obtained from the inelastic

hypersonic flow theory (Hayes and Probstein [21])$will be equal to ue,-

the velocity component at the end of the boundary layer,

U,--iu 
'

83 1 sinxr (A .17)

Here,

.(r+l) M 2r/(I+ r , (A.18)

Let us suppose that

=8: (A.19)

3 1+1

In this case,

u.-=sin x--u.(x). ( A . 20 )

Furthermore, since

H.=Cp.T.+ u.. 21

under conditions where He '=1l,

=,p (1-f Wu.2)=T.(x)\ (A.22) /23

and the conditions at the boundary layer end will be given.
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It is sufficient for the quantities to be non-dimensionalized
as- fo11-ows:

y = (,s R/p,h+Y 0+yu*l) =p"/l(A.23)

in order for the original boundary layer equation to be non-dimen-

sional and to assume the validity of Equations (A.i0) - (A.14).I
Using the state of the mean streami,, let us rewrite the right side

of y in the following manner:

(,2rMo- (r-1)}) {(r-i) M-2+2}).R 1 2/ (r+1) M- I

3

1 {2rM.2-((-l)}T{(r-1)Moo2+2} Rb
(r+1)MT{8r/3(1+1)2}T

(A.24)

=N- R e. |(A.25)
V R.

Furthermore,

f W'=u*/Cp2 T{, /(+A)

n Xft W Moo2a2/C~pJ2 87 (A.26)

In this case, we can use as=rRT,,tcp2 Cv2 =r, .p 2 -VCV2=\ to rewrite it as

follows:

3- 2 ill~·(r-1) (A.27)
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APPENDIX B

Transfer Coefficient of Two-Component Gas

Let us suppose that the first approximation of the Chapman-

Enskog theory [22] applies to the two-component mixed gases which

are being considered here. Let us then apply the Lennard-Jones (6,

12) potential to the inter-particle forces.

(1) Coefficient of viscosity

/(I+ G12 M' K )2/(l + G21 ( B .1 )

Here,

Giz = 1+( )2 A /m l , ' ll .

p ;and 2 are the coefficients of viscosity of the component gases,

expres'sed in the following terms:

}p=266. 93x 1O-' (MT) /,2D.(2;2,(gr.acm-.sec-1 B.3)

This is a relationship which was derived for monoatomic gases, but

it is known that it can be applied also to multiatomic gases aswell__

[23]. Here, ai represents the radius of collision (A) and Qi(2, 2)i_

the non-dimensional collision integral. These are quantities which

accompany the Lennard-Jones intermolecular function. [ If we substi-

tute Equation (B.3) in Equation (B.1) and convert it into non-

dimensional terms, we obtain:

+(1-Z)/{1+(H.G- 1)z}](T/T.)', (B.4)

Here, i(

~G ~~=G ~21, l -m=f (B.5)
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It is assumed that the component gases present in the same space

have the same temperature.

(2) Thermal conduction coefficient

jr = KlEu/( l+ 0 65Gl2M-2)

+K2 Eu2 /(l+l.065G2M -K) (B.6)

Here,

-{,2 ={(r (M} /V 8 ( 12) (B.7)

K1 and K2 are the thermal conduction coefficients for the component

gases,

4 M, -pi (cal.cm-1.sec-l- O K -= i.8)]

The Eucken factor Eui is a coefficient for approximating the thermal

conduction coefficients of multiatomic gases. It is:

Eur=o. 115+0.354CpMi/R\| (B.9)

When these are converted into non-dimensional t-erms, we obtain:

-/ [' z /{+G (l- G7z

+(1-z)/{1+(G-1) z}](/T) (B.10)

Here,

lEul 2Euz=2 (0. 11517+0. 354MCP)(B.)

/(o. 11s +o. 354M2cp2)) }

G=1. 065 2 1 (
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(3) Chapman-Rubesin number /24

The Chapman-Rubesin number is defined as:

C·a-r/p-,r, j (B.12)

In view of Equation (3.9) and Equation (B.4), it can be expressed

as follows:

C = [Lz /{1G +(1- G) z }

+ (1-)/{1+(7nG-1)} (B13) 

(4) Prandtl number

Pr-=ac.r= PrK,' (B.14)

Here, Pr
2

is the Prandtl number for the air at the external end of

the boundary layer. In view of Equation (B.14),

Pr=Pr2 (1-az)[ G+(1-G)

+ (1-z)/{l+(mC-1)}]

/[AI/{+; (1- )z+(-z) (B.15)

(5) Schmidt number

Sc =ppD1

=Sc 2 {1-(1- )K ( T ) (B.16)

Here, Sc
2

is the Schmidt number of the air at the external end of the

boundary layer. The two-component diffusion coefficient D is 

(2MM22.sec-) (B.17)

G12= (l + 2)/2 (A),
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The non-dimensional collision integrals were used for Q(1 1).

In view of Equation (B.17),

Sc= Scz{-_(1-)z}[)z ,/{tz+-f' 'G) z (B.18)
+(1z)/{1 +(rC-1)z}] -'
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